EconPapers    
Economics at your fingertips  
 

Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process

Hui-Fei Lü, Jun Deng, Da-Jiang Li, Fan Xu, Yang Xiao and Chi-Min Shu

Energy, 2021, vol. 227, issue C

Abstract: Coal fire disasters occur frequently in exposed or underground coal zones or gobs, which usually triggered by pre-oxidised coal spontaneous combustion (PCSC). The thermal mass loss characteristics and thermal effects of pre-oxidised coal with the oxidation temperature and oxygen concentration were investigated. The thermogravimetry (TG) results revealed that the oxidation reaction occurred earlier for the pre-oxidised coal than for raw coal. The pre-oxidised coal had a poor ignition performance and burnout capacity than that of raw coal. In addition, the comprehensive combustion performance of pre-oxidised coal is weaker than that of raw coal, but its combustion rate and short-term combustion intensity are higher than raw coal. The differential scanning calorimetry (DSC) results indicated that the temperature at which the thermal release of pre-oxidised coal increases rapidly lags behind that of raw coal. Moreover, the maximum thermal release power and thermal release for the pre-oxidised coal were less than those for raw coal. The risk of PCSC changes with the increase of oxidation temperature, and there is a critical value of oxidation temperature. When the oxidation temperature was less than the critical value the risk of PCSC is higher than that of raw coal. Furthermore, the critical value decreases with the increase of oxygen concentration.

Keywords: Coal fire; Thermal effect; Thermogravimetry; Differential scanning calorimetry; Thermal release (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221006800
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:227:y:2021:i:c:s0360544221006800

DOI: 10.1016/j.energy.2021.120431

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221006800