State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network
Junxiong Chen,
Xiong Feng,
Lin Jiang and
Qiao Zhu
Energy, 2021, vol. 227, issue C
Abstract:
To reduce the influence of the measurement data noise on state of charge (SOC) estimation, a novel neural network method is proposed by combining an input data processing method with the conventional gated recurrent unit recurrent neural network (GRU-RNN) method. First, a denoising autoencoder neural network (DAE-NN) is introduced to extract the useful data features by reducing the noise and increasing the dimensions of the battery measurement data. Then, the feature-extracted data is utilized to train the GRU-RNN, which is widely used in SOC estimation. Notice that a good input data processing method plays a key role in the SOC estimation performance and the generalization ability. Therefore, it is not trivial to combine the data processing method (DAE-NN), and the SOC estimation method (GRU-RNN), which is named DAE-GRU. Compared with the traditional GRU-RNN, the new DAE-GRU method shows a better nonlinear mapping relation between the measurement data and the SOC because of the involvement of the DAE-NN. Finally, three different driving cycles are given in the experiment to cross-train and verify the proposed DAE-GRU, GRU-RNN and RNN. Compared with the GRU-RNN and the RNN, it is demonstrated that the proposed DAE-GRU has better accuracy and robustness in the SOC estimation.
Keywords: State of charge estimation; Lithium-ion battery; Denoising autoencoder; Gated recurrent unit; Recurrent neural network; Electric vehicle (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221007003
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007003
DOI: 10.1016/j.energy.2021.120451
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().