EconPapers    
Economics at your fingertips  
 

Improvement of the power extraction performance of a semi-active flapping airfoil by employing two-sided symmetric slot airfoil

Jianyang Zhu, Mingkang Zhu, Tao Zhang, Hui Zhao and Chao Wang

Energy, 2021, vol. 227, issue C

Abstract: Low power extraction efficiency is considered as one of the significant drawbacks of the semi-active flapping airfoil power generator (FAPG). A novel two-sided symmetric slot airfoil was employed in this work to overcome this problem. A coupled numerical method was developed and validated to simulate the interaction between the wind and flapping airfoil. Moreover, the TAGUCHI method was employed to select candidate parameters of the slot and arrange the virtual design of the numerical experiment. It is shown that the power extraction performance of the semi-active FAPG can be improved by employed slot airfoil, compared to the generator with baseline elliptical airfoil, the maximum efficiency is increased 6.01% for the generator with optimized slot airfoil. The aerodynamic behavior analysis of the airfoil showed that due to the slot, the effect lift of the airfoil is increased, therefore improves the passive rotation velocity and power extraction performance of the FAPG.

Keywords: Slot airfoil; Power extraction efficiency; Semi-active flapping airfoil power generator; Passive plunging velocity; Effect lift (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221007076
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007076

DOI: 10.1016/j.energy.2021.120458

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007076