EconPapers    
Economics at your fingertips  
 

Deep learning-based prediction method on performance change of air source heat pump system under frosting conditions

Yong Hwan Eom, Yoong Chung, Minsu Park, Sung Bin Hong and Min Soo Kim

Energy, 2021, vol. 228, issue C

Abstract: Since frost on an outdoor heat exchanger in winter reduces the performance of an air source heat pump (ASHP), a defrosting process is necessary to restore the degraded performance. Therefore, frosting and defrosting are crucial challenges. For a more efficient defrosting process, many researchers have conducted studies on demand-based defrosting control so far. Recently, various researches on frost growth prediction using neural networks have been conducted. Here, we propose a novel method to quantitatively predict changes in the performance (heating capacity, power consumption, and COP) of ASHPs due to frost growth using a single model based on deep learning. Based on prediction results, this method can be utilized to optimize the defrosting start control strategy. With multiple outputs regression models, we can predict three performance parameters simultaneously. They are models trained with only the initially installed sensors without additional sensors. Besides, we compared the prediction accuracy differences depending on three deep learning structures, such as a fully-connected deep neural network (FCDNN), convolutional neural network (CNN), and long short-term memory (LSTM). Summarizing the results, the optimal FCDNN-based model achieved a root-mean-square (RMS) error of 2.8% for the prediction of heating capacity, 2.4% for power consumption, and 3.4% for COP of ASHPs.

Keywords: Air source heat pump; Frost growth; Defrosting start control; Deep learning; Quantitative prediction; Multiple outputs regression (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422100791X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:228:y:2021:i:c:s036054422100791x

DOI: 10.1016/j.energy.2021.120542

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:228:y:2021:i:c:s036054422100791x