A numerical investigation of CO2 gasification of biomass particles- analysis of energy, exergy and entropy generation
Linwei Wang,
Ainul N. Izaharuddin,
Nader Karimi and
Manosh C. Paul
Energy, 2021, vol. 228, issue C
Abstract:
Much attention has been recently paid to biomass CO2 gasification as a means of CO2 utilisation and mitigation. In this study, a novel low-cost theoretical tool based on thermodynamic equilibrium, and a computational fluid dynamics model are developed to analyse gasification of biomass particles in a CO2 atmosphere. It is shown that increases in C/CO2 enhances the production of hydrogen and results in improving energy and exergy efficiencies of the process. In keeping with that reported for air gasification, increasing the moisture content of biomass intensifies hydrogen production and reduces the yield of CO. The effects of particle temperature on the gasification process are further explored through a spatiotemporal analysis of the gaseous chemical species. In particular, the results reveal that higher initial temperatures of biomass at the entrance of the reactor lead to stronger generation of chemical entropy. Also, the time trace of entropy generation is found to be affected significantly by the initial temperature of the biomass particle. Importantly, the relation between the particle temperature and total entropy generation is observed to be highly nonlinear. Further, it is found that the irreversibility of chemical reactions is the most significant contributor to the total entropy generation in the process.
Keywords: CO2 biomass gasification; Biosyngas production; Energy and exergy efficiencies; Equilibrium and kinetic models; Unsteady entropy generation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221008641
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008641
DOI: 10.1016/j.energy.2021.120615
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().