The effect of swirl burner design configuration on combustion and emission characteristics of lean pre-vaporized premixed flames
Belal Y. Belal,
Gesheng Li,
Zunhua Zhang,
H.M. El-Batsh,
Hany A. Moneib and
Ali M.A. Attia
Energy, 2021, vol. 228, issue C
Abstract:
The present paper experimentally provides a quantitative comparison between the aerodynamic flow field at non-reaction conditions (cold flow) and the combustion and emission characteristics (hot conditions) of two swirl burners having the same swirl number of 0.55 but with two different configurations. The first burner features an annular outer swirler (swirl angle of 40°) and multiple central circular jets, leading to “low swirl combustion”, whereas the second burner has a blocked central passage and an outer swirler (swirl angle of 35°) resulting in “high swirl combustion”; featuring a central recirculation zone. The cold flow study is conducted using a calibrated five-hole probe while the combustion and emission characteristics are obtained via measurements of flame temperatures and the dry volumetric analysis of CO and NOx emissions. Each burner is coaxially mounted to a vertical cylindrical combustor; inside which a lean (equivalence ratio: ϕ = 0.75), pre-vaporized (preheated to a temperature of 523 K) partially premixed mixture of Jet A-1 fuel and air are admitted. The former low swirl combustion burner gives a bulk stable and uniform reaction zone (W-shape) close to the burner exit with a very slight lifting; confirming the concept of “stable lifting” while reducing the pressure drop across the burner exit and eliminating hot spots in the reaction zone. The high swirl combustion burner exhibits a strong central recirculation zone (better flame stability) that is surrounded by an outer V-shape reaction zone having comparatively higher peak levels of temperature, CO and NOx that would lead to greater liability of higher exhaust emission.
Keywords: High swirl combustion; Low swirl combustion; Lean pre-vaporized premixed flames; Jet A-1 flames; Temperature and emission distributions (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221008719
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008719
DOI: 10.1016/j.energy.2021.120622
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().