Ultra-lean blow-off dynamics of a holder-stabilized premixed flame in a preheated mesoscale combustor near laminar critical condition
Jianlong Wan and
Haibo Zhao
Energy, 2021, vol. 228, issue C
Abstract:
The present work experimentally illustrates and analyzes the ultra-lean flame blow-off dynamics near laminar critical condition under the synergistic effect of heat and flow recirculation which exists in many practical combustors (such as aero-engine). The results indicate that the flame blow-off process can be divided into three stages at Reynolds number Re = 240. In the first stage, the flame initially becomes thinner over time. In the second stage, the residual flame with repetitive local extinction and re-ignition (RFRER) appears (the second stage), which is experimentally found for the first time for the methane/air premixed mixture of Lewis number Le = 1.0. The analysis indicates that the local extinction of the flame is mainly caused by the stretch effect on two sides. In the final stage, the residual flame with oscillation appears. The oscillating residual flame is finally carried convectively upstream and extinguishes within the recirculation zone as the present Lewis number effect is small. The analysis also indicates that the residual flame of hydrocarbon fuel cannot be maintained, but this issue can be solved via adding enough fast-diffusing species (such as hydrogen). This mechanism for suppressing or preventing the local extinction of the residual flame may be also suitable for the turbulent flames in many practical combustors. The present study provides the theoretical basis for predicting the flame status and suppressing the unstable flames at extreme operating conditions.
Keywords: Heat recirculation; Flow recirculation; Laminar critical condition; Residual flame; Local extinction and re-ignition (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221008768
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008768
DOI: 10.1016/j.energy.2021.120627
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().