Engineering enhanced anaerobic digestion: Benefits of ethanol fermentation pretreatment for boosting direct interspecies electron transfer
Zhiqiang Zhao,
Yang Li and
Yaobin Zhang
Energy, 2021, vol. 228, issue C
Abstract:
Conversion of organic wastes to methane via anaerobic digestion has been practiced for more than 160 years. However, the technical bottlenecks derived from the thermodynamic limitations of interspecies hydrogen/formate transfer (IHT/IFT) between syntrophs and methanogens resulting in the slow fermentation rate, low methane conversion efficiency and poor stability of system still limit its large-scale application. No engineering strategy to speed up IHT/IFT for dramatically changing the performances of anaerobic digestion has been developed. However, recent studies documented that simply pretreating organic wastes to produce ethanol could effectively accelerate and stabilize anaerobic digestion. This may be linked to the promotion of direct interspecies electron transfer (DIET), an alternative working mode that no longer requires hydrogen or formate as an electron carrier. Further information on how this strategy affects the function of methanogenic communities to clarify its advantages is required. In this study, we summarized the evidence that pretreating organic wastes to produce ethanol enhanced anaerobic digestion, discussed the link between ethanol and DIET, and emphasized how this strategy would be better applied in the future.
Keywords: Anaerobic digestion; Methane production; Direct interspecies electron transfer (DIET); Ethanol fermentation; Pretreatment (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221008926
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008926
DOI: 10.1016/j.energy.2021.120643
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().