Data-driven based machine learning models for predicting the deliverability of underground natural gas storage in salt caverns
Aliyuda Ali
Energy, 2021, vol. 229, issue C
Abstract:
This paper proposes a collection of novel deliverability prediction models for underground natural gas storage (UNGS) in salt caverns based on machine learning algorithms. Considering that the natural gas supply chain is characterized by imbalances between demand and supply on a timely basis, effective and fast models for predicting the deliverability of UNGS would not only be a valuable tool to various stakeholders but also, of great benefit in competitive natural gas marketplace. In this paper, a first step in applying machine learning algorithms to predict the deliverability of UNGS in salt caverns is proposed. To achieve this, the capability of three machine learning algorithms namely, artificial neural network (ANN), support vector machine (SVM), and Random Forest (RF) are examined. The predictive capabilities of these methods were investigated using different monthly field storage data samples for different years with varied data samples of 36 active UNGS in salt caverns in the United States. Experimental results reveal that the machine learning models developed in this study can serve as suitable tools for predicting the deliverability of UNGS in salt caverns with different performances. Overall result shows that RF model exhibits better prediction performance with varied data partitions over ANN and SVM models.
Keywords: Artificial neural networks; Data-driven modeling; Energy storage; Machine learning; Natural gas industry; Random forests; Support vector machines; Underground natural gas storage (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221008975
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:229:y:2021:i:c:s0360544221008975
DOI: 10.1016/j.energy.2021.120648
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().