EconPapers    
Economics at your fingertips  
 

Performance optimization and comparison towards compact and efficient absorption refrigeration system with conventional and emerging absorbers/desorbers

Chong Zhai and Wei Wu

Energy, 2021, vol. 229, issue C

Abstract: Absorption refrigeration system (ARS) is significant for renewable/waste energy utilization to mitigate global warming. To select the best-performing ARS, four systems, namely falling-film horizontal tube ARS, falling-film vertical tube ARS, plate heat exchanger ARS, and microchannel membrane-based ARS, are compared systematically. System models have been established with validated accuracies to evaluate the coefficient of performance (COP) and volumetric cooling effect (qv). The results show that under a design driving power of 0.5 kW, the COP increases with the tube outer diameter/length in falling-film ARS and channel width in plate heat exchanger ARS and microchannel membrane-based ARS. qv decreases with tube outer diameter/length in falling-film ARS and channel width/height in plate heat exchanger ARS and microchannel membrane-based ARS. With geometry optimization, microchannel membrane-based ARS provides the highest COP of 0.855 with qv = 385 kW/m3, followed by plate heat exchanger ARS of 0.846, falling-film horizontal tube ARS of 0.832, and falling-film vertical tube ARS of 0.801. Meanwhile, microchannel membrane-based ARS also produces the maximum qv of 1147 kW/m3 with COP = 0.840, followed by plate heat exchanger ARS of 714 kW/m3, falling-film horizontal tube ARS of 391 kW/m3, and falling-film vertical tube ARS of 197 kW/m3. Thus, microchannel membrane-based ARS is advantageous in both efficiency and compactness among four ARSs. This work aims to facilitate absorbers/desorbers structure design towards compact and efficient ARS.

Keywords: Low-grade energy; Solar cooling; Compact absorption refrigeration system; Thermal energy utilization; Volumetric cooling effect; Coefficient of performance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422100918X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:229:y:2021:i:c:s036054422100918x

DOI: 10.1016/j.energy.2021.120669

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:229:y:2021:i:c:s036054422100918x