EconPapers    
Economics at your fingertips  
 

Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study

Yuming Wen, Ilman Nuran Zaini, Shule Wang, Wangzhong Mu, Pär Göran Jönsson and Weihong Yang

Energy, 2021, vol. 229, issue C

Abstract: Pyrolysis of municipal solid waste (MSW) represents one of the most promising solutions to recycle materials and recover energy. Two of the main components of MSW are waste cardboard and plastic. In this study, the pyrolysis of cardboard and polyethylene (PE) and the co-pyrolysis of their mixtures were conducted to investigate the synergistic effect by using thermogravimetric analysis. The whole reaction process was divided into four pseudoreactions, namely, hemicellulose, lignin, cellulose, and PE, by using the Frazer-Suzuki deconvolution method. It was found that the co-pyrolysis of cardboard and PE could promote the decomposition degrees of cardboard from 70.28% to 75.31%, when the PE fraction increased from 0 to 75%. However, the presence of cardboard can hinder the heat adsorption of PE, which shifts the peak of the PE reaction to a higher temperature. This results in higher Ea and ΔH‡ values for PE pyrolysis with an increasing fraction of cardboard. On the other hand, the Ea and ΔH‡ values of cellulose pyrolysis have their lowest values when the mixing rate is around 50%. This research deepens the understanding of the synergistic effect of co-pyrolysis of cardboard and PE, which supports the potential application of pyrolysis of MSW.

Keywords: Pyrolysis; Kinetics; Thermodynamics; Cardboard; Polyethylene (PE) (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221009415
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:229:y:2021:i:c:s0360544221009415

DOI: 10.1016/j.energy.2021.120693

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:229:y:2021:i:c:s0360544221009415