Improving energy self-sufficiency of a renovated residential neighborhood with heat pumps by analyzing smart meter data
Shalika Walker,
Vince Bergkamp,
Dujuan Yang,
T.A.J. van Goch,
Katarina Katic and
Wim Zeiler
Energy, 2021, vol. 229, issue C
Abstract:
In the energy renovation process, usually, buildings are upgraded to become energy-neutral annually with installed photovoltaic systems and heat pumps. However, the energy self-sufficiency of these buildings is surprisingly low. Therefore, the rapid deployment of heat pump based heating systems creates a shift of natural-gas consumption from the previously consumed building side (boilers) towards the electricity production side (power-plants). Fortunately, the development of information and communication technology enables access to consumption/generation data of building-related energy systems. Thus, there is an opportunity to strategically use this data and improve energy self-sufficiency and accommodate heat pump based heating systems. In this study, the improvement of self-sufficiency is discussed using a renovated neighborhood. The presented method incorporates a smart-grid application with a data-driven clustering, prediction, and an energy management strategy. First, clustering of similar demand-profiled dwellings with the k-means algorithm, and demand-prediction using the random-forest technique was performed. Afterwards, electric energy storage was introduced and multi-objective optimization reducing annualized costs and carbon emissions have been performed. For the carbon-dioxide optimal case, when aimed at the entire neighborhood, an annual self-sufficiency increment of more than 25% can be achieved, while four months out of the twelve being 100% energy self-sufficient.
Keywords: K-means clustering; Neighborhood level; Electrical storage system; Random-forest; Multi-objective optimization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221009592
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:229:y:2021:i:c:s0360544221009592
DOI: 10.1016/j.energy.2021.120711
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().