EconPapers    
Economics at your fingertips  
 

A multivariate grey prediction model based on energy logistic equation and its application in energy prediction in China

Huiming Duan and Xinyu Pang

Energy, 2021, vol. 229, issue C

Abstract: The energy consumption problem is an important issue in the development process of various countries, and scientific methods for predicting energy consumption can assist governments in making decisions. The energy consumption trend usually shows a saturated S-shaped curve, and the mathematical model of the Logistic function can be used to fit this trend. Based on the Energy Logistic equation, a novel multivariable grey prediction model of energy consumption is proposed in this paper. The least square method is used to estimate the parameters of the model, and the approximate time response formula of the model is obtained. The degree of correlation between several energy consumptions is calculated by the grey correlation analysis. Then, from the angle of the three main energy sources to establish the energy consumption prediction model respectively, and the validity of the model is verified by selecting the data of three typical coal, crude oil and natural gas consumption provinces in China (Shandong Province, Heilongjiang Province and Guangdong Province). Compared with the other six multivariate grey models, the results show that the new model is superior to the other models according to five test indexes. Finally, based on the modelling of three provinces in China, the model predicts the consumption of three kinds of energy in the next five years, and a correlation analysis is performed according to the prediction results.

Keywords: Grey prediction model; Energy logistic function; Grey correlation analysis; ECGM(1,N) (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221009646
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:229:y:2021:i:c:s0360544221009646

DOI: 10.1016/j.energy.2021.120716

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:229:y:2021:i:c:s0360544221009646