EconPapers    
Economics at your fingertips  
 

Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism

Jiaran Liu, Jinzhu Tan, Weizhan Yang, Yang Li and Chao Wang

Energy, 2021, vol. 229, issue C

Abstract: Proton exchange membrane fuel cell (PEMFC) has become one of the most important clean energy devices. Clamping pressure generates as PEMFC is assembled, affecting the mechanical stability and electrochemical performance of the PEMFC. Clamping mechanism is critical to the contact pressure and its uniformity as well as PEMFC electrochemical performance. In this paper, considering the possibility of generating uniform contact pressure, a novel pneumatic clamping mechanism was proposed. A single PEMFC with the novel pneumatic clamping mechanism was designed. Based on finite element method, two models of the PEMFC with the traditional clamping mechanism and the novel pneumatic clamping mechanism were established. And then, finite element analysis (FEA) was conducted using the commercial code ABAQUS. In addition, the contact pressure and electrochemical performance experiments were carried out, respectively. The accuracy of the numerical simulation was verified. The simulated and tested results show that the PEMFC under the novel pneumatic clamping mechanism had better contact pressure distribution and better electrochemical performance than the PEMFC under the traditional clamping mechanism.

Keywords: PEMFC; Contact pressure; Novel clamping mechanism; Numerical simulation; Electrochemical performance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221010446
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:229:y:2021:i:c:s0360544221010446

DOI: 10.1016/j.energy.2021.120796

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:229:y:2021:i:c:s0360544221010446