Techno-economic and environmental evaluation of grid-connected and off-grid hybrid intermittent power generation systems: A case study of a mild humid subtropical climate zone in China
Chong Li,
Yuan Zheng,
Zhengyong Li,
Lei Zhang,
Lin Zhang,
Yicai Shan and
Qinghui Tang
Energy, 2021, vol. 230, issue C
Abstract:
In order to promote the development of green buildings, this paper presents a technical, economic, and environmental evaluation of a residential building powered by hybrid intermittent generation systems in a mild humid subtropical climate zone in China. The technical, economic, and environmental mathematical models of hybrid systems are addressed. This study selected Guiyang city, which is a typical mild humid climate zone. The results revealed that the 30 kW grid-connected system for the building was the most economical with a net present cost of $ 28,041 and cost of energy of 0.069 $/kWh, whereas this was the least environmentally friendly form of power generation, emitting a maximum amount of CO2 of 26,609 kg/yr. From an economic and environmental perspective, grid/photovoltaic (PV)/wind hybrid systems in on-grid systems may be a better choice for supplying power to buildings in Guiyang. If the extension of the power grid is not feasible, off-grid PV/battery hybrid systems consisting of 115 kW PV units, 80 battery units, and a 30 kW power converter, are more suitable for supplying power to the building. Furthermore, the results indicated that wind power is not suitable for supplying power to buildings in Guiyang, mainly due to relatively low wind speeds.
Keywords: Techno-economic; Environmental; Hybrid intermittent energy system; Wind power generation; Solar photovoltaic power generation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221009762
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:230:y:2021:i:c:s0360544221009762
DOI: 10.1016/j.energy.2021.120728
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().