EconPapers    
Economics at your fingertips  
 

Numerical studies of effect of integrated through-plane array flow field on novel PEFC performance using BWO algorithm under uncertainties

Hui Li and Nasrin Eghbalian

Energy, 2021, vol. 231, issue C

Abstract: One of the essential mechanisms for polymer electrolyte FCs (PEFCs) is the flow-field plates. Two types of flow fields are serpentine channels and incorporating parallel, which is the most common models. The main objective of this paper is to model and analyse the thermodynamic performance of a novel FC. In this paper, a novel kind of PEFC is proposed, which is a new flowing field known as the through-plane array (TPA). Furthermore, a novel application of the Black Widow Optimization Algorithm (BWO) is implemented to gain unidentified parameters of the novel PEFC model. Developing a precise PEFC model is the final goal of the current work that prepares real modelling and simulation results of desired FCs. The various curves of the PEFC such as I–V, I–P, I–P–V, and I-T-Voltage are obtained via the BWO algorithm. This problem is a nonlinear model, in which the sum of the squared errors of FC. BWO algorithm is applied for objective function minimization. The predicted PEFC model is verified using measured results, which are obtained under different conditions of pressure and temperature uncertainty. Finally, a comparison between the TPA model and the other two models based on the BWO is accomplished and the superiority of the proposed technique is proved.

Keywords: Fuel cell; Polymer electrolyte FCs; Through-plane array; Black widow optimization algorithm; Temperature uncertainty (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221010203
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:231:y:2021:i:c:s0360544221010203

DOI: 10.1016/j.energy.2021.120772

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221010203