EconPapers    
Economics at your fingertips  
 

Fully decentralized control strategy for heterogeneous energy storage systems distributed in islanded DC datacentre microgrid

Watcharakorn Pinthurat and Branislav Hredzak

Energy, 2021, vol. 231, issue C

Abstract: Currently, communication-based distributed cooperative control strategies are employed to control energy storage systems in an islanded DC datacentre microgrid. This paper proposes a fully decentralized, communication-less control strategy for heterogeneous energy storage devices distributed in the DC datacentre. In the proposed strategy, decentralized virtual resistance based control allocates the low frequency component of loads to batteries while the high frequency component is allocated to ultracapacitors with the virtual capacitive droop control. Furthermore, the proposed control system balances the batteries’ state of charges to a common value. During operation, the microgrid local bus voltages are regulated within 360–400 V range in accordance with the ETSI EN 300 132-3-1 standard. The proposed control approach offers advantages in terms of reliability and flexibility, as it does not require any communication infrastructure. Performance of the proposed decentralized control strategy is demonstrated on an islanded 380 VDC datacentre microgrid with variable loads, using Real-Time Digital Simulator (RTDS) with detailed switching converter models and nonlinear battery models.

Keywords: Heterogeneous storage devices; Decentralized control; State of charge balancing; Battery; Ultracapacitor; Datacentre microgrid; Photovoltaic source (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221011622
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:231:y:2021:i:c:s0360544221011622

DOI: 10.1016/j.energy.2021.120914

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221011622