Design improvement of volumetric pump for engine cooling in the transportation sector
Fabio Fatigati,
Davide Di Battista and
Roberto Cipollone
Energy, 2021, vol. 231, issue C
Abstract:
Internal combustion engine (ICE) thermal management is one of the most attractive methods for reducing both fuel consumption and harmful emissions. Conventional ICE cooling uses a dynamic centrifugal pump, which is generally designed based on the maximum ICE power. Unfortunately, such devices present significant efficiency reductions when they are operated far from the design point. Therefore, a sliding vane rotating pump (SVRP) has been considered as a substitute for the centrifugal pump because its efficiency is not dependent on the revolution speed and head pressure. This study developed a mathematical model that could be used for designing and simulating an SVRP. Then, an SVRP was built and tested, and the results validated the model under a wide range of operating conditions. Once validated, the model was used as a software platform to improve the SVRP design using a novel approach based on the optimisation of the ports and shape. Moreover, the benefits of this SVRP were assessed by comparing electrical and mechanical actuation using the Worldwide Harmonised Light Vehicles Test Procedure (WLTP). A pump energy reduction of approximately 30% and a CO2 emission reduction of up to 1.4 g/km were obtained.
Keywords: Thermal management; CO2 emission reduction; Sliding rotary vane pump; Novel pump design optimisation approach; Variable speed and geometry pump; Engine cooling (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221011841
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:231:y:2021:i:c:s0360544221011841
DOI: 10.1016/j.energy.2021.120936
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().