Analysis of the unsteady thermal response of a Li-ion battery pack to dynamic loads
Ali Saeed,
Nader Karimi and
Manosh C. Paul
Energy, 2021, vol. 231, issue C
Abstract:
It is becoming increasingly apparent that wide application of electric vehicles (EVs) are subject to significant improvements in battery technology. Temperature sensitivity is a major issue adversely affecting battery performance and requiring a robust thermal control. Yet, this is challenged by the large variety of temporal scenarios though which heat is generated in a battery pack, demanding dynamic tools to predict the thermal evolution of batteries. Classical transfer functions provide a low-cost and effective predictive tool. However, they are limited to linear systems, while nonlinear predictive tools can become impractical for EV applications. Therefore, this study provides a methodology to assess the dynamics of battery cooling. This is achieved through conduction of high fidelity modelling of battery cooling exposed to different temporal disturbances on the internal heat generation. The results are then post-processed to evaluate the extent of linearity. A quantitative measure of non-linearity is further applied to clearly determine the degree of nonlinearity in the heat transfer response. It is shown that battery cooling system can be approximated as a linear dynamical system as long as the disturbances are of short duration and relatively low amplitude. Conversely, long and large amplitude temporal disturbances can render strongly nonlinear thermal responses.
Keywords: Battery thermal management; Temperature control; Battery control system; Electric vehicle; Nonlinear dynamic response (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221011956
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:231:y:2021:i:c:s0360544221011956
DOI: 10.1016/j.energy.2021.120947
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().