Solar powered adsorption desalination for Northern and Southern Europe
Christopher Olkis,
Shihab AL-Hasni,
Stefano Brandani,
Salvatore Vasta and
Giulio Santori
Energy, 2021, vol. 232, issue C
Abstract:
Adsorption desalinators can be powered by solar energy to provide potable water and to mitigate increasing water stress throughout Europe. In this study, we analyse the feasibility of a solar powered adsorption desalination system design to produce drinking water at two distinct European locations, representing two extremes in terms of solar radiation. Detailed solar radiation data is used as input to an experimentally validated adsorption desalination model. The experimental validation is performed using advanced ionogel materials, as these materials show outstanding performance with regeneration temperatures as low as 25 °C. The system size requirements for the adsorption beds and solar collector area are calculated for each location and season. In Scotland, the system is viable for summer and spring, which tend to be the driest months. In Sicily, solar radiation is sufficient throughout the year and a system would require 140 kg of ionogel and 200 m2 of solar collector area to produce one cubic metre of drinking water per day.
Keywords: Adsorption desalination; Low-grade-heat recovery; Solar radiation; Flat plate solar collector; Ionogel (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221011907
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:232:y:2021:i:c:s0360544221011907
DOI: 10.1016/j.energy.2021.120942
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().