EconPapers    
Economics at your fingertips  
 

Proposal and analysis of a novel cooling-power cogeneration system driven by the exhaust gas heat of HCCI engine fuelled by wet-ethanol

Mohd Asjad Siddiqui, Abdul Khaliq and Rajesh Kumar

Energy, 2021, vol. 232, issue C

Abstract: A novel combined power and cooling cycle consisting of the ejector refrigeration cycle (ERC) and organic Rankine cycle (ORC) is proposed to enhance the overall efficiency of wet-ethanol fuelled homogeneous charge compression ignition (HCCI) engine. The proposed combined system of cooling-power cogeneration was simulated by Engineering Equation Solver (EES) software. Combined system responses to altering the operative conditions on the energy and exergy performances are ascertained to obtain guidance for system design. The results are computed for R134a, R290, and R600a working fluids. Increase in turbocharger pressure ratio from 2.5 to 3.5 raises the thermal efficiency of cooling-power cogeneration from 47.87% to 50.09% when R134a is used as working fluid. Cooling capacity and exergy of refrigeration are decreased by greater than 2.0% in case of R134a operated system when the vapor generator pressure is elevated from 1800 kPa to 2200 kPa. Increase in evaporator pressure of ERC from 327.4 kPa to 348.7 kPa is greatly beneficial to thermodynamic performance of cogeneration and its cooling capacity is improved by 11.34% when R134a is utilized as the working. When PEvap rises from 175.7 kPa to 186.9 kPa and R600a is employed as the working fluid, the cooling capacity is increased by 12.58%.

Keywords: Exergy; Wet-ethanol; HCCI engine; ERC; ORC (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221012020
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012020

DOI: 10.1016/j.energy.2021.120954

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012020