How sensitive is a dynamic ammonia synthesis process? Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage)
Kevin Verleysen,
Alessandro Parente and
Francesco Contino
Energy, 2021, vol. 232, issue C
Abstract:
The transition towards a sustainable energy sector depends on how we safely manage the transport and storage of energy to keep up with the demand. Large storage (TWh) of renewable energy can be accomplished by producing an energy carrier like ammonia. This power-to-ammonia production process overly depends on the stability of the ammonia reactor where any variations induced by uncertainties could have a large impact on the performance during its dynamic operations. To determine the effect of these variations, we need to identify which of the uncertainties have to be scrutinized during model design. The current work carries out the development of a dynamic Haber-Bosch process, implementing uncertainties in the model and performing an uncertainty quantification analysis on the process. Subsequently, the sensitivity indices quantify the impact of these uncertainties on the design during ramp-up. The global sensitivity analysis indicated that the reactor inlet temperature has the most considerable impact on the performance during ramp-up, where the hydrogen/nitrogen ratio has the second most significant impact. We see that the uncertainty on the reactor inlet temperature dominates (87.8%) the overall standard deviation of the ammonia production. More precise control over the inlet temperature could reduce this impact on the standard deviation. The work can be extended by including a hydrogen and nitrogen production process while powering the full process with renewable power. We can then measure the effect of coupling renewables directly to the dynamic power-to-ammonia process and optimize the design under uncertainty.
Keywords: Stochastic dynamic systems; Uncertainty quantification; Haber-bosch process; Seasonal hydrogen storage; Aspen plus dynamics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221012640
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012640
DOI: 10.1016/j.energy.2021.121016
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().