EconPapers    
Economics at your fingertips  
 

Lifelong control of off-grid microgrid with model-based reinforcement learning

Simone Totaro, Ioannis Boukas, Anders Jonsson and Bertrand Cornélusse

Energy, 2021, vol. 232, issue C

Abstract: Off-grid microgrids are receiving a growing interest for rural electrification purposes in developing countries due to their ability to ensure affordable, sustainable and reliable energy services. Off-grid microgrids rely on renewable energy sources (RES) coupled with storage systems to supply the electrical consumption. The inherent uncertainty introduced by RES as well as the stochastic nature of the electrical demand in rural contexts pose significant challenges to the efficient control of off-grid microgrids throughout their entire life span. In this paper, we address the lifelong control problem of an isolated microgrid. We categorize the set of changes that may occur over its life span in progressive and abrupt changes. We propose a novel model-based reinforcement learning algorithm that is able to address both types of changes. In particular, the proposed algorithm demonstrates generalisation properties, transfer capabilities and better robustness in case of fast-changing system dynamics. The proposed algorithm is compared against a rule-based policy and a model predictive controller with look-ahead. The results show that the trained agent is able to outperform both benchmarks in the lifelong setting where the system dynamics are changing over time.

Keywords: Microgrid control; Optimization; Reinforcement learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221012834
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012834

DOI: 10.1016/j.energy.2021.121035

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012834