EconPapers    
Economics at your fingertips  
 

Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle

Chenfang Wang, Qingshan Li, Chunmei Wang, Yangjun Zhang and Weilin Zhuge

Energy, 2021, vol. 232, issue C

Abstract: In this study, a thermodynamic model of a hybrid system consisting of a proton-exchange membrane fuel cell (PEMFC) system and an organic Rankine cycle (ORC) system is established using Aspen Plus software. The optimal working fluid is selected by comparing the performance of pure working fluids and zeotropic mixtures of working fluids in an ORC system. The zeotropic working fluid consisting of R245fa/R123 with a mixing ratio of 0.6/0.4 shows the best performance. The effects of some key parameters, including the current density and operating temperature, on the performance of the PEMFC–ORC system with zeotropic mixing fluids are discussed. The results indicate that the power and efficiency of the PEMFC–ORC system with the zeotropic mixing fluid increase with increasing operating temperature. When the R245fa/R123 zeotropic working fluid with a mixing ratio of 0.6/0.4 is used, the net power and efficiency of the hybrid system reach optimum values under the studied boundaries, with improvements of 12.87% and 4.84%, respectively. The influence of the maximum allowable evaporation pressure and stack operating temperature on the selection of optimum working fluid for the hybrid system is discussed in addition.

Keywords: Heat recovery; Proton-exchange membrane fuel cell (PEMFC); Organic rankine cycle (ORC); Zeotropic mixing fluid (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422101286X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:232:y:2021:i:c:s036054422101286x

DOI: 10.1016/j.energy.2021.121038

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:232:y:2021:i:c:s036054422101286x