EconPapers    
Economics at your fingertips  
 

Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels

Xiao-Shuai Bai, Wei-Wei Yang, Xin-Yuan Tang, Fu-Sheng Yang, Yu-Hang Jiao and Yu Yang

Energy, 2021, vol. 232, issue C

Abstract: A novel cylindrical metal hydride (MH) reactor embedded rectangle heat exchange channels (RHEC) was proposed in this work. The hydrogen absorption of RHEC was studied and compared with the longitudinal finned single-tube reactor (LFST) and multilayer finned single-tube reactor (MFST). The results indicated that the charging time for 90% saturation for RHEC decreases by nearly 40% and 38% compared with LFST and MFST, respectively. Then, a performance improvement method from heat transfer to structure is applied to further enhance the hydrogen absorption of RHEC. According to the bed temperature distributions, the MH bed in RHEC can be separated as three areas along radial direction. The central region and extended region are in poor heat transfer, while the near channel region possesses better heat transfer. Therefore, the heat transportation in central region and extended region need to be improved. It was found that the decrease of slant angle of heat exchange channels has nearly no effect on mean absorption performance, but can significantly accelerate the heat transportation in central region. Besides, interlaced fin layout can further accelerate the heat transportation in reaction bed compared with parallel fin layout. Moreover, adding metal foam in heat exchange channels can enhance hydrogen absorption remarkably.

Keywords: Metal hydride reactor; Rectangle heat exchange channel; Hydrogen absorption; Interlaced fins layout; Metal foam (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221013499
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013499

DOI: 10.1016/j.energy.2021.121101

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013499