Heat metering for residential buildings: A novel approach through dynamic simulations for the calculation of energy and economic savings
F. Calise,
F. Cappiello,
D. D'Agostino and
M. Vicidomini
Energy, 2021, vol. 234, issue C
Abstract:
This paper proposes a novel approach in order to accurately calculate the savings due to heat metering. The approach is based on a detailed dynamic simulation of building-plant systems. The building is geometrically modelled in Google Sketchup and linked to the TRNSYS environment, including an extremely detailed model for the simulation of building thermo-physical behavior. All the models are validated using the data provided by the occupants. The model allows one to evaluate the yearly energy demand, energy supplied by radiators, heat gains, etc. A specific case study is developed for a residential building located in Naples (South Italy). The developed model is used to calculate the building energy demand for 3 scenarios: centralized heating system not equipped with heat metering; centralized heating system with thermostatic valves and not equipped with heat metering; centralized heating system with thermostatic valves and equipped with heat metering. Results show that in case of centralized heating systems equipped with thermostatic valves and heat metering devices, thermal energy savings up to 64% can be reached mainly when the system operates for many hours per day, leading to discounted pay back periods lower than 4 years.
Keywords: Heat metering; Heat accounting; Centralized heating systems; Dynamic simulation; Optimization; Thermostatic valve (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221014523
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014523
DOI: 10.1016/j.energy.2021.121204
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().