Steam chamber expanding processes and bottom water invading characteristics during steam flooding in heavy oil reservoirs
Zhanxi Pang,
Luting Wang,
Fanghao Yin and
Xiaocong Lyu
Energy, 2021, vol. 234, issue C
Abstract:
It is very important to quantitatively analyze steam chamber expanding and bottom water invading during steam flooding. Firstly, a novel method was established to identify the moment of water invading based on the energy conservation law. Then, a series of experiments were carried out to research the effect of steam flooding through 3D physical simulation and oil-component analysis. The results showed that water invading was recognized through the inflection point of tangent slope of temperature vs. time. Steam mainly migrated in upper layer and hot water moved downwards into bottom layer. The four stages of steam flooding were corresponding to the growth processes of steam chamber, such as expanding, advancing, channeling and overriding. The ultimate oil recovery factor was only 36.00%. The shape of water coning deformed from a triangle to a trapezoid. Finally, the dimensionless volume of water coning was about 32.29%. During steam flooding, the content of oil components gradually changed due to the effect of distillation. The content of light hydrocarbon was higher at the front of steam chamber. However, heavy components mainly occupied the swept zone of steam flooding. The results are important in exploitation practice aiming at heavy oil reservoirs with bottom water.
Keywords: Heavy oil reservoir; Bottom water; Steam flooding; Steam chamber; Component analysis; Experiment (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221014626
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014626
DOI: 10.1016/j.energy.2021.121214
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().