EconPapers    
Economics at your fingertips  
 

Coordinated control system modeling of ultra-supercritical unit based on a new fuzzy neural network

Guolian Hou, Jian Xiong, Guiping Zhou, Linjuan Gong, Congzhi Huang and Shunjiang Wang

Energy, 2021, vol. 234, issue C

Abstract: The coordinated control systems (CCS) in ultra-supercritical thermal power unit, like many other industrial systems, is a complex multivariable system with severe nonlinearity, strong multivariable coupling and uncertainties. In order to meet the requirements of operational stability, economy. etc in ultra-supercritical unit, it is necessary to establish its accurate mathematical model and further design the advanced controller. Against this background, a new fuzzy neural network modeling method is proposed in this paper. First of all, the incremental model is considered separately to improve the rationality of the local linear model structure. Then, the parameters in antecedent part is initialized by a kernel k-means++ algorithm, in which Xie-Beni index is used to optimize the number of fuzzy rules. Finally, supervised adaptive gradient descent algorithm and artificial immune particle swarm optimization algorithm work in stages to complete the training of the consequent part parameters. The proposed modeling method in this paper is applied to a 1000 MW unit in China and shows satisfactory accuracy. In the established model, the MSE of power output, main steam pressure and separator outlet steam temperature are 0.0099, 1.21E-4, 0.0023, respectively. Both numerical and graphical simulation results confirm the effectiveness of the presented fuzzy neural network in modeling.

Keywords: Coordinated control systems (CCS); Ultra-supercritical unit; Fuzzy neural network; Kernel k-means++; Supervised adaptive gradient descent; Artificial immune particle swarm optimization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221014791
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014791

DOI: 10.1016/j.energy.2021.121231

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014791