EconPapers    
Economics at your fingertips  
 

Three-dimensional simulation of different flow fields of proton exchange membrane fuel cell using a multi-phase coupled model with cooling channel

Seyed Ali Atyabi, Ebrahim Afshari, Elnaz Zohravi and Chinonyelum M. Udemu

Energy, 2021, vol. 234, issue C

Abstract: A suitable cooling flow field design for proton exchange membrane fuel cell (PEMFC) improves the cell's net generated power, besides achieving steady cell performance and a longer lifespan. The innovation in this work lies in the simultaneous simulation of electrochemical and cooling models while accounting for both thermal and electrical contact resistance between the gas diffusion layer and bipolar plates. In this study, flow field designs including straight parallel channels (Case A), straight parallel channels filled with metal foam (Case B), multi-channel serpentine (Case C), novel serpentine channels (Case D), and integrated metal foam (Case E) used for both gas channels and cooling channels are numerically simulated. Results show that the highest uniformity of temperature in the catalyst layer-gas diffusion layer interface is obtained in Case D, which has the largest pressure drop compared to Cases B, C, and E. However, due to the uniform distribution of reactant flows, the maximum temperature observed in the catalyst layer of this flow field was the lowest compared to the rest of the cases. Furthermore, the maximum power density of 0.75 Wcm−2 was observed in Case D at a corresponding voltage of 0.6 V, which reduced when the effect of high pressure drop was taken into account. Following the conclusion of the simulation and analysis, Case D displayed the best cooling performance while Case E produced the maximum net power output.

Keywords: PEMFC; Hydrogen; Flow field; Cooling; Uniformity index; Power density (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422101495X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:234:y:2021:i:c:s036054422101495x

DOI: 10.1016/j.energy.2021.121247

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:234:y:2021:i:c:s036054422101495x