Numerical simulation on purge strategy of proton exchange membrane fuel cell with dead-ended anode
Ben Chen,
Haoran Zhou,
Shaowen He,
Kai Meng,
Yang Liu and
Yonghua Cai
Energy, 2021, vol. 234, issue C
Abstract:
Proton exchange membrane fuel cells with dead-ended anode simplify fuel cell system and effectively reduce its volume, weight and cost. In this study, a three-dimensional numerical model of a dead-ended anode PEMFC with single straight channel is developed. The effect of operating conditions, including operating temperature, anode inlet pressure, and cathode relative humidity on operating characteristics of dead-ended anode PEMFC was studied in detail. What's more, the purge cycle, hydrogen utilization and energy efficiency are analyzed and the reasonable purge strategy was optimized. The results indicates that the decrease of anode partial pressure caused by the accumulation of nitrogen and liquid water is the main reason for the voltage decline during dead-ended anode operation. The purge cycle is effectively prolonged by increasing anode pressure and reducing the relative humidity of cathode. The purge cycle is extended from 437s to 562.5s as the anode pressure increased from 50 kPa to 150 kPa. The purpose of optimizing the purge strategy is to fully remove the accumulated water and nitrogen, so as to prolong the purge cycle and improve hydrogen utilization and energy efficiency. From the result, the hydrogen utilization and energy efficiency of the base case are 95.77% and 40.05%.
Keywords: Proton exchange membrane fuel cells; Dead-ended anode; Purge strategy; Hydrogen utilization; Energy efficiency (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221015139
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015139
DOI: 10.1016/j.energy.2021.121265
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().