EconPapers    
Economics at your fingertips  
 

Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data

Lulu Jiang, Zhongwei Deng, Xiaolin Tang, Lin Hu, Xianke Lin and Xiaosong Hu

Energy, 2021, vol. 234, issue C

Abstract: Battery fault diagnosis is essential to ensure the safe and reliable operation of electric vehicles. Early detection of battery faults can reduce battery incidents and property losses. However, early warning of battery thermal runaway is still a challenging task. This paper proposes a novel data-driven method for lithium-ion battery pack fault diagnosis and thermal runaway warning based on state representation methodology. The normalized battery voltages are used to achieve accurate identification of battery early faults. The proposed method calculates the real-time state of each cell to characterize the internal characteristics of the battery cell, and the state changes are recorded to achieve battery fault diagnosis. The fault detection time is compared with the alarm time of real vehicles to verify the effectiveness of the proposed method. The real-world operation data of four electric vehicles with different specifications are used to verify the feasibility, robustness, and reliability of the proposed method. The results show that the method can achieve not only the accurate identification of the faulty cells and accurate determination of the voltage fault type but also the early detection of faults and early warning of thermal runaway.

Keywords: Electric vehicle; Data-driven; Fault diagnosis; Thermal runaway; Lithium-ion battery packs; Real-world vehicle data (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221015140
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015140

DOI: 10.1016/j.energy.2021.121266

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015140