A novel combined model for wind speed prediction – Combination of linear model, shallow neural networks, and deep learning approaches
Shuai Wang,
Jianzhou Wang,
Haiyan Lu and
Weigang Zhao
Energy, 2021, vol. 234, issue C
Abstract:
Accurate wind speed forecasting is increasingly essential for improving the operating efficiency of electric power systems. Numerous models have been proposed to obtain the accurate and stable wind speed forecasting results. However, previous proposed models are limited by single predictive model or cannot deal with complex nonlinear data characteristic, which resulted in poor and unstable prediction results. In this paper, a novel forecasting model that combines noise processing, statistical approaches, deep learning frameworks and multi-objective optimization algorithm is proposed. Multi-objective optimization algorithms can take advantage of the merits of benchmark prediction models to address nonlinear characteristics of wind speed series. The 10-min real wind speed data from three Sites in China are adopted for verifying the effectiveness of this proposed model. The experimental results of multi-step prediction show that the model achieves MAPE1-step = 2.2109%, MAPE2-step = 3.0309%, and MAPE3-step = 4.2536% at Site 1; MAPE1-step = 2.4586%, MAPE2-step = 3.2034%, and MAPE3-step = 4.6843% at Site 2; MAPE1-step = 2.3180%, MAPE2-step = 3.0846%, and MAPE3-step = 4.4193% at Site 3. Therefore, the forecasting performance of this model is excellent, and it is beneficial to the dispatching and planning of power grid.
Keywords: Wind speed prediction; Deep learning algorithm; Data preprocessing; Combination forecasting strategy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221015231
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015231
DOI: 10.1016/j.energy.2021.121275
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().