EconPapers    
Economics at your fingertips  
 

An experimental study on energetic performance evaluation of a parabolic trough solar collector operating with Al2O3/water and GO/water nanofluids

Seyed Mohammad Sadegh Hosseini and Mohammad Shafiey Dehaj

Energy, 2021, vol. 234, issue C

Abstract: The parabolic trough solar collector (PTSC) is one of the most developed and commercialized technologies in solar heating systems. The main purpose of this study is to utilize two samples of water-based nanofluids (0.2 wt %) made of graphene oxide (GO) and alumina (Al2O3) nanoparticles in a PTSC. First, the stability and thermophysical properties of the nanofluids were investigated by focusing on the morphology of their constituent nanoparticles. In one of the results, the values of thermal conductivity and dynamic viscosity in the GO nanofluid were obtained 9.1% and 23.4% higher than Al2O3 nanofluid. Next, the nanofluids were tested in the PTSC at three volume flow rates (1, 3, and 5 L/min). Compared to pure water, the best enhancement in thermal efficiency was observed at 1 L/min about 63.2% in GO nanofluid and 32.1% in Al2O3 nanofluid. Also, the best energetic performance (the ratio of useful energy provided to pumping energy required) of the system was realized at 1 L/min. The operational effectiveness of the nanofluids in the collector was decreased with increasing flow rate. This behavior was observed more severely in the GO nanofluid, as it showed lower energetic productivity than pure water at flow rate of 5 L/min.

Keywords: Parabolic trough solar collector; Energetic performance evaluation; Al2O3 nanofluid; GO nanofluid (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221015656
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015656

DOI: 10.1016/j.energy.2021.121317

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015656