A cantilever-driven rotor for efficient vibration energy harvesting
Qinxue Tan,
Kangqi Fan,
Jiyuan Guo,
Tao Wen,
Libo Gao and
Shengxi Zhou
Energy, 2021, vol. 235, issue C
Abstract:
The pervasive renewable vibration energy has been considered as a promising alternative to electrochemical energy of batteries for powering wireless sensors and wearable electronics, but its efficient harvesting is still an unsolved problem. To tackle this issue, this paper presents an innovative mechanical modulation mechanism, which we name ‘cantilever-driven rotor’, to convert vibrations to uni-directional rotation aiming to achieve improved energy harvesting performance. Compared with the conventional cantilever-based energy harvesters (CBEHs), the rotor-based energy harvester (RBEH) can provide both enhanced output power (1.8 mW versus 0.3 mW) and extended working bandwidth (4.5 Hz versus 1.9 Hz) under a harmonic vibration of 0.8 g (1 g = 9.8 m/s2). Moreover, electric outputs of the RBEH can persist for 27 s after the external excitation vanishes. With the electric energy generated by the RBEH from the harmonic vibration, a wireless acceleration sensor could be powered to perform with its full functionality. When attached to the human ankle, the RBEH can maintain the normal operation of a Timer under a walking speed of 6 km/h. This work provides a basically different vibration-to-rotation conversion mechanism with superior performance in vibration energy exploitation and potential applications in self-sustained wireless sensors and wearable electronics.
Keywords: Energy harvester; Mechanical vibration; Rotation motion; Wireless sensor (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221015747
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:235:y:2021:i:c:s0360544221015747
DOI: 10.1016/j.energy.2021.121326
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().