EconPapers    
Economics at your fingertips  
 

Inhibitory and synergistic effects on thermal behaviour and char characteristics during the co-pyrolysis of biomass and single-use plastics

Kumar Raja Vanapalli, Jayanta Bhattacharya, Biswajit Samal, Subhash Chandra, Isha Medha and Brajesh K. Dubey

Energy, 2021, vol. 235, issue C

Abstract: The co-pyrolytic behaviour of single-use plastics (Polystyrene, Low-density polyethylene) and Eucalyptus biomass was investigated at variable temperatures (300, 400, 500, and 600 °C) and the effects of their interactions on the characteristics of solid chars were also studied. The variation in thermal profiles of ‘Δ Mass loss%’ showed the inhibitory and synergistic effects of plastics on the biomass degradation, resulting in higher and lower yields of char composite, respectively. The blend containing polystyrene exhibited the highest synergistic (Δ M ≈ 15.1) and inhibitory (Δ M ≈ - 4) effects. The thermal kinetics of blends also indicated the presence of both the effects through relatively higher and lower apparent activation energies compared to the calculated, before and during the degradation of plastics. Despite low fixed carbon contents and high volatile matter, polymer-coated char composites had higher fuel value indices (36–136%), energy yields (1–26%) and calorific values (15–21%), relative to biochar. After the complete degradation of plastics, char composites exhibited higher values of electrical conductivity (2–40%), surface area (15–64%), and cation exchange capacity (5–19%). These properties advocate the flexibility of char composites' applicability as solid fuel or soil amender depending on the optimized conditions of co-pyrolysis.

Keywords: Co-pyrolysis; Biomass; Single-use plastics; Kinetics; Thermogravimetric analysis; Synergy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221016170
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016170

DOI: 10.1016/j.energy.2021.121369

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016170