Inhibitory and synergistic effects on thermal behaviour and char characteristics during the co-pyrolysis of biomass and single-use plastics
Kumar Raja Vanapalli,
Jayanta Bhattacharya,
Biswajit Samal,
Subhash Chandra,
Isha Medha and
Brajesh K. Dubey
Energy, 2021, vol. 235, issue C
Abstract:
The co-pyrolytic behaviour of single-use plastics (Polystyrene, Low-density polyethylene) and Eucalyptus biomass was investigated at variable temperatures (300, 400, 500, and 600 °C) and the effects of their interactions on the characteristics of solid chars were also studied. The variation in thermal profiles of ‘Δ Mass loss%’ showed the inhibitory and synergistic effects of plastics on the biomass degradation, resulting in higher and lower yields of char composite, respectively. The blend containing polystyrene exhibited the highest synergistic (Δ M ≈ 15.1) and inhibitory (Δ M ≈ - 4) effects. The thermal kinetics of blends also indicated the presence of both the effects through relatively higher and lower apparent activation energies compared to the calculated, before and during the degradation of plastics. Despite low fixed carbon contents and high volatile matter, polymer-coated char composites had higher fuel value indices (36–136%), energy yields (1–26%) and calorific values (15–21%), relative to biochar. After the complete degradation of plastics, char composites exhibited higher values of electrical conductivity (2–40%), surface area (15–64%), and cation exchange capacity (5–19%). These properties advocate the flexibility of char composites' applicability as solid fuel or soil amender depending on the optimized conditions of co-pyrolysis.
Keywords: Co-pyrolysis; Biomass; Single-use plastics; Kinetics; Thermogravimetric analysis; Synergy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221016170
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016170
DOI: 10.1016/j.energy.2021.121369
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().