Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning
Ting Yang,
Liyuan Zhao,
Wei Li and
Albert Y. Zomaya
Energy, 2021, vol. 235, issue C
Abstract:
Dynamic energy dispatch is an integral part of the operation optimization of integrated energy systems (IESs). Most existing dynamic dispatch schemes depend heavily on explicit forecast or mathematical models of the future uncertainties. Due to the randomness of renewable energy generation and energy demands, these approaches are limited by the accuracy of forecasting or model. A novel model-free dynamic dispatch strategy for IES based on improved deep reinforcement learning (DRL) is proposed to solve the problem. The IES dynamic dispatch problem is formulated as a Markov decision process (MDP), in which the uncertainties of renewable generation, electric load and heat load are considered. For solving the MDP, an improved deep deterministic policy gradient (DDPG) algorithm using prioritized experience replay mechanism and L2 regularization is developed, so as to improve the policy quality and learning efficiency of the dispatch strategy. The proposed approach does not require any forecast information or distribution knowledge, and can adaptively respond to the stochastic fluctuations of the supply and demands. Simulation results show the proposed dispatch strategy has faster convergence and lower operating costs than original DDPG-based strategy. In addition, the advantages of the proposed approach in terms of cost-effectiveness and stochastic environmental adaptation are validated.
Keywords: Dynamic energy dispatch; Integrated energy system; Deep reinforcement learning; Improved deep deterministic policy gradient; Uncertainties (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422101625X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:235:y:2021:i:c:s036054422101625x
DOI: 10.1016/j.energy.2021.121377
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().