EconPapers    
Economics at your fingertips  
 

Biomass integration for energy recovery and efficient use of resources: Tomsk Region

Yee Van Fan, Sergey Romanenko, Limei Gai, Ekaterina Kupressova, Petar Sabev Varbanov and Jiří Jaromír Klemeš

Energy, 2021, vol. 235, issue C

Abstract: Resource recovery has an essential role in achieving sustainable development. This study aims to minimise the environmental footprint of biomass integration for energy recovery, where a wide range of biomass, including manure, residual and forest wood, are considered. The assessed case study is the Tomsk region in the Russian Federation, focusing on GHG (Greenhouse Gas) footprints (CO2, CH4, N2O). The adapted clustering-based method suggested that biomass integration, consisting of 16 districts, can be divided into three major clusters. The clusters could facilitate further resource planning, considering the land-use footprint of different energy generation. This study identified biomass integration design with minimum GHG footprint (origin of biomass and transportation) of - 217 kt CO2eq/y mainly contributed by the avoided methane from manure. Scenario 1, where the energy demand (3,723 TJ/y) is solely fulfilled by forest wood, contributes to 85.73 kt CO2eq/y. By limiting waste biomass (manure and residual) for local utilisation only (without integration), 60% higher GHG emission (- 90.2 kt CO2eq/y) is identified compared to the identified solution with a minimum GHG footprint. The environmental sustainability of bioenergy is highly dependent on the type of biomass, transporting activities, and heating value. It is crucial to evaluate case by case situation in substituting fossil-based energy or other renewable energy.

Keywords: Biomss integration; Waste to energy; GHG footprint; Transportation; Bioenergy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221016261
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016261

DOI: 10.1016/j.energy.2021.121378

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016261