EconPapers    
Economics at your fingertips  
 

Design and modeling a frequency self-tuning vibration energy harvester for rotational applications

Licheng Deng, Jian Jiang, Dingli Zhang, Lin Zhou and Yuming Fang

Energy, 2021, vol. 235, issue C

Abstract: Vibration energy harvester (VEH) for rotational applications has attracted increasing attentions in the last decade, and one of the major challenges is still the mismatch between the resonant frequency of the VEH and the rotational frequency. To solve this issue, the frequency matching mechanism of the VEH applied to rotating environment is studied and a self-tuning piezoelectric VEH is proposed. The main advantage of the proposed VEH is that the effective beam length is changed by centrifugal force while the stiffness of the beam is changed by rigid-flexible coupling effect, which is the key to realize frequency matching in a wide frequency range. Then an accurate rigid-flexible coupling model for the proposed VEH is established with Hamiltonian variational principle, and a finite element model is built for numerical analysis. Finally, the established model is used to study the proposed VEH. Numerical analysis results show that the proposed VEH can achieve frequency matching within the frequency range of 8 ∼28 Hz, and the power output is 0.42 ∼0.74 mW. Numerical analysis results also show that the frequency tuning mass introduced as an independent parameter in VEH is of great significance to improve the frequency matching range, and also makes the structure design flexible.

Keywords: Vibration energy harvester; Frequency self-tuning; Frequency matching; Centrifugal force; Rigid-flexible coupling (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221016625
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016625

DOI: 10.1016/j.energy.2021.121414

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016625