Reaction performance of CaCO3/CaO thermochemical energy storage with TiO2 dopant and experimental study in a fixed-bed reactor
T.X. Xu,
X.K. Tian,
A.A. Khosa,
J. Yan,
Q. Ye and
C.Y. Zhao
Energy, 2021, vol. 236, issue C
Abstract:
The CaCO3/CaO reversible reaction pair is a promising thermochemical energy storage (TCES) technology for concentrating solar power (CSP) plants. However, the reaction performance and cyclic stability of this reaction pair is compromised because of sintering. In this study, TiO2-doped in CaCO3/CaO TCES system are systematically investigated by synchronous thermal analyzer (STA). The reaction kinetics of decarbonation process with and without TiO2 doping are compared in N2 and CO2 atmospheres. Furthermore, the performance of CaCO3/CaO TCES system is analyzed in a fixed-bed reactor for future application. It is found that doping TiO2 can improve the anti-sintering ability and cyclic stability of CaCO3, and the optimal doping ratio is 2.5 mol %, whose energy storage density is 1256.68 kJ/kgsample at first and improved by 2.26 times after 30 cycles. Moreover, doping TiO2 decreases the activation energy and initial decarbonation temperature in CO2 atmospheres. In exothermic experiments of fixed-bed reactor, the maximum exothermic temperature difference is 309.83 °C at 550 °C, and the highest absolute temperature reaches 848.7 °C at 750 °C. TiO2 dopant promotes the decarbonation at lower temperature, and obtains a higher overall conversion (0.506) at 850 °C. Overall, CaCO3 with TiO2 dopant is of great significance for future industrial and commercial applications.
Keywords: Concentrated solar power (CSP); Calcium looping (CaL); Cyclic stability; Reaction kinetics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221016996
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:236:y:2021:i:c:s0360544221016996
DOI: 10.1016/j.energy.2021.121451
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().