Numerical simulation and production prediction assessment of Takigami geothermal reservoir
Saeid Jalilinasrabady,
Toshiaki Tanaka,
Ryuichi Itoi and
Hiroki Goto
Energy, 2021, vol. 236, issue C
Abstract:
A numerical model was developed for the Takigami geothermal reservoir. A conceptual model of the field was constructed, initial and boundary conditions were defined according to available data. For the optimum model, permeability values of assigned rock types, mass flow rates, enthalpies, and locations of recharge zones were estimated according to matching between computed temperature for wells and their temperature profiles before the exploitation. Observed and calculated temperature profiles confirmed the validity of the conceptual model. The best model could successfully reproduce the initial temperature profiles of 13 wells located mainly in the production area. A developed model was used as an initial model for future prediction of the reservoir performance. The prediction simulation was conducted by assuming two different development scenarios for the Takigami geothermal power plant. Scenario I was continuing the current power production. Scenario II was to investigate producing 8.6 MWe more electricity by employing bottoming binary cycle to the currently under operation single flash plant. Effects of production and reinjection temperatures under proposed development scenarios were evaluated. Simulation results indicated that most probably there is no direct interaction between reinjection and production zones in the Takigami reservoir, and installing a binary plant will not have any severe impact on reservoir performance.
Keywords: Takigami; Geothermal reservoir; Numerical simulation; Sustainability; Reservoir assessment (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221017515
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017515
DOI: 10.1016/j.energy.2021.121503
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().