EconPapers    
Economics at your fingertips  
 

Developing a combustion-driven reactor for waste conversion

João Vitor F. Duque, Flávio L.F. Bittencourt, Márcio F. Martins and Gérald Debenest

Energy, 2021, vol. 237, issue C

Abstract: One of the problems of the scalability to industrial applications of pyrolysis reactors is the high electric energy consumption. In this study, a novel device in which a self-sustaining combustion front drives the input energy for pyrolysis is proposed. A new methodology to define a representative longitudinal temperature profile based on the time-averaged method at each thermocouple position is introduced. The reactor was tested under operating conditions of air velocities, and bed compositions. The reliability of twenty-nine runs was verified through repeatability, empirical dimensionless correlations, and analysis of variance. The temperature average standard deviation ranged from 30 °C to 54 °C, depending on the bed composition. The dimensionless analysis revealed the power-law relationship between temperature and inputs. The analysis of variance explained the independence of the input parameters on defining the longitudinal temperature profile. A positive energy balance ranging from 1.6 to 5.8 kWh/kg of initial fuel mass, a consequence of a self-sustaining combustion process, was a characteristic of all experiments.

Keywords: Pyrolysis; Smoldering combustion; Charcoal; Longitudinal temperature profile; Temperature frequency distribution (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221017370
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:237:y:2021:i:c:s0360544221017370

DOI: 10.1016/j.energy.2021.121489

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:237:y:2021:i:c:s0360544221017370