Investigation on the operable range and idle condition of hydrogen-fueled spark ignition engine for unmanned aerial vehicle (UAV)
Sechul Oh,
Cheolwoong Park,
Ducduy Nguyen,
Seonyeob Kim,
Yongrae Kim,
Young Choi and
Jeongwoo Lee
Energy, 2021, vol. 237, issue C
Abstract:
In this study, a hydrogen-fueled spark ignition engine was investigated for UAV operation, with a focus on its combustion region and idle condition. A 2.4l, four-cylinder spark ignition engine was used for experiments, with modification for hydrogen usage instead of gasoline. In experiments, the feasible combustion region and limitations of the combustion phenomena for the hydrogen-fueled spark ignition engine at specific load and speed conditions of 50 Nm and 2000 RPM were examined. It was found that owing to the wide flammability range of hydrogen, the air–fuel ratio could be varied from 1.0 to 2.4. However, misfire and backfire occurred because of the mixing issue and highly ignitable characteristics of the hydrogen–air mixture, respectively, under relatively rich conditions (excess air ratio between 1.0 and 1.5). Unstable combustion occurred under a relatively lean condition (excess air ratio>2.0). Considering important parameters such as the nitrogen oxide emissions, unburned hydrogen, and brake thermal efficiency, an excess air ratio between 1.8 and 2.0 with maximum brake torque timing (MBT) operation was appropriate for this condition. Extremely lean conditions with zero load can be achieved with stable combustion with the excess air ratio up to 3.0, which can almost eliminate nitrogen oxide emissions.
Keywords: Hydrogen; Unmanned aerial vehicle; Spark ignition engine; Backfire; Combustion region; Idle condition (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221018934
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:237:y:2021:i:c:s0360544221018934
DOI: 10.1016/j.energy.2021.121645
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().