Optimal control and implementation of energy management strategy for a DC microgrid
Seydali Ferahtia,
Ali Djeroui,
Hegazy Rezk,
Azeddine Houari,
Samir Zeghlache and
Mohamed Machmoum
Energy, 2022, vol. 238, issue PB
Abstract:
This paper proposes an optimal energy management strategy (EMS) for DC microgrid. The studied system presents a commercial building power system that combines a photovoltaic array (PV), fuel cell (FC), a battery storage system and a bidirectional DC/AC grid converter. The integration of multiple power sources like renewables leads to techno-economical challenges including power quality, stability, fuel consumption, and efficiency. The proposed EMS is based on the salp swarm algorithm (SSA). This algorithm has been implemented because of considerable advantages such as its convergence properties and its reduced computing complexity. The step-by-step design of the proposed method is detailed. Then HIL tests are performed to validate the proposed EMS performances. The performance of the proposed EMS is compared with the state machine control strategy (SMC) in terms of system efficiency and fuel consumption where the obtained results prove the superiority of the proposed EMS (5.2 % fuel saving). Regarding the power quality, the proposed EMS is compared with EMS based PSO to investigate the optimizer influence, the obtained results confirm the ability of the proposed EMS to provide a superior power quality. Hence, the proposed EMS responds to the power systems challenges including power quality, fuel-saving and efficiency.
Keywords: Energy management system (EMS); DC microgrid; Salp swarm algorithm (SSA); Particle swarm optimization (PSO); Fuel cell; Battery (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221020259
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020259
DOI: 10.1016/j.energy.2021.121777
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().