Optimal planning of intra-city public charging stations
Haiyang Lin,
Caiyun Bian,
Yu Wang,
Hailong Li,
Qie Sun and
Fredrik Wallin
Energy, 2022, vol. 238, issue PC
Abstract:
Intra-city Public Charging Stations (PCSs) play a crucial role in promoting the mass deployment of Electric Vehicles (EVs). To motivate the investment on PCSs, this work proposes a novel framework to find the optimal location and size of PCSs, which can maximize the benefit of the investment. The impacts of charging behaviors and urban land uses on the income of PCSs are taken into account. An agent-based trip chain model is used to represent the travel and charging patterns of EV owners. A cell-based geographic partition method based on Geographic Information System is employed to reflect the influence of land use on the dynamic and stochastic nature of EV charging behaviors. Based on the distributed charging demand, the optimal location and size of PCSs are determined by mixed-integer linear programming. Västerås, a Swedish city, is used as a case study to demonstrate the model's effectiveness. It is found that the charging demand served by a PCS is critical to its profitability, which is greatly affected by the charging behavior of drivers, the location and the service range of PCS. Moreover, charging price is another significant factor impacting profitability, and consequently the competitiveness of slow and fast PCSs.
Keywords: Electric vehicle (EV); Public charging stations; Geographic information system (GIS); Agent-based model; Optimal planning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221021964
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221021964
DOI: 10.1016/j.energy.2021.121948
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().