EconPapers    
Economics at your fingertips  
 

Insights into the product quality and energy requirements for solid biofuel production: A comparison of hydrothermal carbonization, pyrolysis and torrefaction of olive tree pruning

J. González-Arias, X. Gómez, M. González-Castaño, M.E. Sánchez, J.G. Rosas and J. Cara-Jiménez

Energy, 2022, vol. 238, issue PC

Abstract: For a bio-economy establishment, understanding the energy consumption needs to produce solid biofuels is a key point. Herein, olive tree pruning was treated by both dry (pyrolysis and torrefaction) and wet (hydrothermal carbonization) thermal treatments. Product yield, solid quality and energy consumption were assessed. The solids were characterized by means of chemical and thermogravimetric analysis. For all treatments, coal-like solid products were obtained, with higher heating values (HHV) of almost 30 MJ kg−1 in most of the conditions evaluated. Chars from pyrolysis presented the greater carbon content (between 76 and 85 wt%) but also the higher ash content (ranging from 6 to 9 wt%). From an energy consumption perspective, torrefaction registered the lowest energy consumption (between 5.85 and 20.76 MJ kg−1 char). The highest energy contents per kilogram of char produced were also reflected in torrefaction samples, with values around 11 MJ kg−1 char. Although the obtained HHVs were greater for pyrolysis chars the higher mass yields obtained in torrefaction makes it more profitable. The least severe conditions allowed to obtain a positive energy balance only with the solid phase considered. Nonetheless, further room for improvement is possible since the gas and liquid phases may also be valorised.

Keywords: Hydrothermal carbonization; Slow pyrolysis; Torrefaction; Olive tree pruning; Biofuel (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221022702
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022702

DOI: 10.1016/j.energy.2021.122022

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022702