EconPapers    
Economics at your fingertips  
 

Data-driven financial transmission right scenario generation and speculation

Kedi Zheng, Huiyao Chen, Yi Wang and Qixin Chen

Energy, 2022, vol. 238, issue PC

Abstract: This paper proposes a data-driven framework to solve the financial transmission right (FTR) portfolio construction problem from the perspective of a speculator. FTR speculation is modeled as a stochastic programming problem in which uncertainty comes from the price spread across different pricing nodes over a certain holding period. Since it is difficult to model and forecast the joint distribution of prices for typical electricity markets with thousands of pricing nodes, k-means clustering with network congestion patterns is first used to help focus on important nodes and reduce the problem size. Then, a quantile regression (QR)-based method is proposed to predict the conditional distribution of average nodal prices. A Gaussian copula is further used to construct the joint conditional distribution of average nodal prices. The proposed method is tested on real market data obtained from the southwest power pool (SPP). The results show that the method has a steady performance in both node selection and price scenario generation and outperforms state-of-art methods, including copula-GARCH and truncated skew-t distributions.

Keywords: Price forecasting; Dependence modeling; Stochastic programming; Financial transmission rights (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221023045
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221023045

DOI: 10.1016/j.energy.2021.122056

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221023045