Two-level comprehensive energy-efficiency quantitative diagnosis scheme for ethylene-cracking furnace with multi-working-condition of fault and exception operation
Di Meng,
Cheng Shao and
Li Zhu
Energy, 2022, vol. 239, issue PA
Abstract:
Because ethylene-cracking furnace accounts for vast majority of energy consumption in ethylene production, energy-efficiency diagnosis of ethylene-cracking furnace is of great significance for improving energy utilization and production operation. In this paper, a two-level comprehensive energy-efficiency diagnosis problem is considered for both furnace level and internal chambers level. Apart from production load and feed composition, fault and exception operation also have influence on energy-efficiency, which leads to a multiple-working-condition energy-efficiency diagnosis problem under fault and exception operation. Therefore, this paper proposes a new energy-efficiency diagnosis scheme for ethylene-cracking furnace. Firstly, a two-level index system is designed to have an overall understanding of energy-efficiency of ethylene-cracking furnace and internal chambers. Secondly, fault and operation diagnosis criteria are established to identify fault samples, exception operation samples, and fault-and-exception-operation samples from inefficient samples after multi-working-condition classification. Thirdly, contributions of operation conditions, outputs, and internal chambers are quantified by step-by-step transformation and total differential methods to locate weak links in energy efficiency. Finally, effectiveness of diagnosis scheme is verified by applying it to a Chinese ethylene plant. Not only are three inefficient types detected, but also contributions of root causes resulting in inefficiency are quantified, which provides energy conservation and efficiency improvement suggestions for decision-makers.
Keywords: Ethylene-cracking furnace; Two-level comprehensive energy efficiency; Energy-efficiency diagnosis; Root cause quantification; Fault; Operation condition (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221020831
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221020831
DOI: 10.1016/j.energy.2021.121835
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().