The accuracy of multiple methods for estimating the reaction order of representative thermoplastic polymers waste for energy utilization
Wenlong Zhang,
Juan Zhang,
Yanming Ding,
Ru Zhou and
Shaohua Mao
Energy, 2022, vol. 239, issue PB
Abstract:
Thermoplastic polymers are versatile for different fields, and their waste is produced largely. Among the waste treatment methods, pyrolysis is an important method to dispose of thermoplastic polymers waste because of potential energy utilization. Furthermore, accurate pyrolysis kinetic parameters can reflect the pyrolysis process. Therein, reaction order n is an essential factor to characterize reaction kinetics, while the difference between different n values is very small, so the accuracy of n should be paid more attention. To obtain the accurate n value of thermoplastic polymers waste in nitrogen, one representative material called extruded polystyrene (XPS) was studied by using thermogravimetric analysis at five heating rates. The kinetic parameters and thermodynamic parameters were calculated simultaneously, and n was estimated by multiple methods (master plots, model-free, Shuffled Complex Evolution (SCE) and model reconstruction) at heating rates of 10, 30 and 40 K/min. The results showed that XPS waste had important energy potentials, and the n was 2, 2.08, 1.99 and 1.64 for four methods, respectively. Moreover, based on fixed kinetic parameters, the accuracy of n obtained by multiple methods was compared at 3 and 80 K/min not used to estimate kinetic parameters. The accuracy of these methods was: SCE > model reconstruction > model-free > master plots.
Keywords: Thermoplastic polymers; Extruded polystyrene; Pyrolysis; Reaction order; Thermodynamic parameters (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221023604
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023604
DOI: 10.1016/j.energy.2021.122112
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().