EconPapers    
Economics at your fingertips  
 

Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control

Fermín Rodríguez, Ainhoa Galarza, Juan C. Vasquez and Josep M. Guerrero

Energy, 2022, vol. 239, issue PB

Abstract: In recent years, the photovoltaic generation installed capacity has been steadily growing thanks to its inexhaustible and non-polluting characteristics. However, solar generators are strongly dependent on intermittent weather parameters, increasing power systems' uncertainty level. Forecasting models have arisen as a feasible solution to decreasing photovoltaic generators' uncertainty level, as they can produce accurate predictions. Traditionally, the vast majority of research studies have focused on the development of accurate prediction point forecasters. However, in recent years some researchers have suggested the concept of prediction interval forecasting, where not only an accurate prediction point but also the confidence level of a given prediction are computed to provide further information. This paper develops a new model for predicting photovoltaic generators' output power confidence interval 10 min ahead, based on deep learning, mathematical probability density functions and meteorological parameters. The model's accuracy has been validated with a real data series collected from Spanish meteorological stations. In addition, two error metrics, prediction interval coverage percentage and Skill score, are computed at a 95% confidence level to examine the model's accuracy. The prediction interval coverage percentage values are greater than the chosen confidence level, which means, as stated in the literature, the proposed model is well-founded.

Keywords: Confidence interval forecast; Intra-hour horizon; Solar irradiation; Smart control; Photovoltaic generation output power (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221023641
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023641

DOI: 10.1016/j.energy.2021.122116

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023641