Effect of parallel LPG fuelling in a methanol fuelled SI engine under variable compression ratio
M.H. Dinesh,
Jayashish Kumar Pandey and
G.N. Kumar
Energy, 2022, vol. 239, issue PC
Abstract:
In the present experimental study, five LPG fractions from 25% to 45% based on total energy are tested in a methanol fuelled SI engine at compression ratios (CR) varying from 12 to 15. Results are affirmative towards methanol/LPG dual fuel. The brake power, brake thermal efficiency, and volumetric efficiency are found to increase by 51%, 21.2%, and 13% respectively by changing from 25% LPG fraction at CR12 to 45% LPG fraction at CR15. The flame development period is found to decrease with CR and LPG, while the flame propagation period and total combustion duration are found to decrease with CR but increase with LPG. The maximum cylinder pressure and net heat release rate are found to increase by 101% and 27.8% respectively and advanced. CO emissions are found to decrease with CR while increase with LPG fraction. HC is found to decrease with LPG as well as CR. CO2 emissions are found to increase continuously with increasing LPG fractions and CR. The NOx emissions are also found to increase explicitly with LPG and CR, a net 209% increase in it is found 25% LPG at CR 12–45% LPG at CR15.
Keywords: LPG; Methanol; Variable compression ratio; Performance; Combustion; Emission (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221023823
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221023823
DOI: 10.1016/j.energy.2021.122134
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().